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5 :

An extended form of the- Ackeret iteration process is utilized
galculate the compressible flow at high subsonic velocities

past an elliptic cylinder. The angle of attack with respect to
the direction of the undisturbed stream is assumed small and- the”
circulation is fixed by the condition that the trailing end of the
major axis be a stagnation point. The expression for the moment
acting on the elllptic cylinder is derived and shows a first-step
improvement of the Prandtl-Glauert approximation. In addition, a
second-step improvement is obtained in the Prandtl-Glauert approxi-
mation for the lifting force. doting on "thé elliptic cylinder. - By
means of ‘these two results it is possible to calculate the effect
of compressibility on the position of the center of pressure as -
a function of the thickness coefficient and of the stream Mach
number. Tables and corresponding graphs are included to illustrate
numericelly the theoretlcal results derived. For example, it is
found that, for an elliptic profile of thickness coefficient 0.15
and stream.Mach number 0.80, the center of pressure moves rearward
a distance 2.6 percent of the chord from its position in the
incompressible flow. )

. INFRODUCTION

The present paper is concerned mainly with the calculation of
the effect of compressibility at high subsonic velocities on the
moment acting on an elliptic cylinder. The method used is an
iteration procedure, credited to Ackeret, which proceeds from the
Prandtl-Glauert approximation as the first step and successeively
improves it in a systematic manner. . The details of the Ackerst
iteration process have been described in reference 1 and, -thereforse,.
only material essential to the present paper will be repeated.

The main purpose of the Ackeret iteration method is %o
linearize the nonlinear partial differential equation (for the
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velocity potentlal or the stredm function) that governs the steady
two-dimensional flow of a perfect compreselble fluld. This
linesrization 1z accomplished by assuming the d.eveloment of the
stream i‘u.nction \!!, say, to be of the form

\lf = -0 + \Ifl(X,Y) + WE{X)Y) + ¢3(X’Y) F e o o (1)

vhere U is the velocity of the undisturbed stream and X and Y
ars the rectangular Cartesien coordinates of the physical flow
plane. Equation (1) is essentially a development of the stresm
function around a uniform stream In the negabive direchtlon of +ho
X-axis. For the purpose of defining or controlling the iteration
procedure, the function \y 1 18 regarded as small compared with

the preceding function \;n. and the derivatives have a gimilar *
relati onship‘ r"*11e>n the total index decides 'bhe crder of tho turm,
for exam_'gle, 1113 :I.s of the same order es \jfl or 11/1\,;2 _ The

accuracy of this iteration method clea»ly depends .on the degres to
which the assumptions are satisfied. In the case of slender bodies
without stagnation points, the first few steps may be oxpected_to
Jleld a good result. In the case of bodies with stagnation points,
the accuracy of the calculaticns obviously depends on the number
of terms Y, - derived, each new term reducing the extent of the

rogion of inaccuracy in tHe neighborhbod.-of the stagnation poinﬁ'.

"In the trestment of the various. eq_uations that result. frcm o
the “linedrizetion of the Pundamental differential equation by
means of thé Ackeieb itération process, it is convenient to i;rb,r-o- .
duce an affine transformation of the’ physical flow plane. Thils
affine transformatlion reduces the differential equations to be
solved to a Laplace equation and to Paisson equations. In the
berformance of this simplifica‘oion, the statement of thoe boundsry
conditlon at tho solid ¥y moans of the veloclty potontilal bocomos
very complicated. Fortunately, howover, the stabtement of—tho
boundary coniition by means of the stream function, namely, ¥ = 0
at the s0lid, is invariant for the affine. transformation; thore- .
fore, the " use of the streesm functlon throughout the gnalysis of
the present paper i1s 46 be pa:'eferrod.n Tho choice of the ellipso
as theé 8olid bovndary 1s d:ictated. by, the “proporty . 'bhat ar. affinc .,
distortioh Of ah ellipse leads to anothor ell:Lpse, thorefore, the .
analysis can bo conducthed, entirely ‘in the affinely distortod plane -
-and the résulss thus obbained’ linked. to the ac'bual olliptic profilo
by means of simplo corrospondonce relations.
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MOMENT FORMULA

Specifically, the problem treated herein 1s Yo obtain an
improvement of the Prandtl-Glauert approximation of the effect of
compreasibility on the moment acting on an elliptic cylinder set
at a small angle of attack in a uniform stream. Tet Z denote
the physical flow plane, 2z the affinely transformed planse,
and z' +the plane of the cilrcle into which the affinely distorted
profile is mapped by a conformal transformation. (See fig. 1.)

Ag in the calculation of the resultant lifting force glven in
reference 1, it is a great labor saving devlice to choose a large
¢ircle in the z'-plane to correspond to the control conbour in the
Physical Z~plane during the calculatlon of the moment and also to

choose &8s independent variables the polar coordinates Ren -g
of the z'~plane, with

27 =Re F S (2) .

where § = &+ in and R is the radius of the conformal circle.
(See fig. 1(c).)

Since the large circle in the z'-plane corresponds to a largs
control ellipse in the physical flow plane 2, +the expression for
the moment mmet contain, in addition to the usual momentum integral,
8 term involving the integration of the pressures around the conbrol
ellipse. This additional term is necessary because the normal
vector to an ellipse does not pass through its center. The general
vector expression for the moment im & compressible fluid Mc with

respect to the origin, obtained from reference 2, is

55 [Fal(as) as +SE - (3)

where brackets and parentheses denote vector and scalar products,
regpsctively, and

r radius vector from origin
n unit normal vettor :
q velocity vector of fluid
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ds element of lengbth along control contour
h] pressure of fluld
ol density of fluid

The positive direction of the unit normal vector n is from tho
control contowr toward the origin, and the line integrals are taken
positively counterclockwise around the control conbtour in the
physical flow plane. The unit tangent vector + and the unit
normal vector T +thus form a right-hand frame; hence, a positive
value for the moment corresponds to a counterclockwise rotation
(fig. 1(a)).

It is easy to verify that eq_uatign (3} can be rewritten in
the form .

M a-?.p.:ﬁa(u - 1v)%2 az + %{56’: + god) a&® (%)
L1} .

where u &and v are the components of the velocity vector along
the X-axis and Y-axis, respectively, and

Z=Xwi¥ =
PO A I
2 _ .2, .2

g =u +v

Note that if the fluid is incompressible
302 S
P + qu_ = Congtant

according to Bernoulli's eguation; therefore, the second integral _
vanishes identically and yields the usual Blasius formula for the
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7
moment. By use.of the sdiabatic relation % = (E-> , equation (i)

1 P
becomes .
—7 . -
1 N T 1 1\
M, plﬁ sg (u :Lv)] 7 42 + plvéﬂg
p 2 - .
1 Fl/pa 2 L e .
—— e f i ey dr .. -
53 (F’lU) (5)

where the subscript 1 refers to the sterting conditions at infinity
and

U velocity of undlsturbed fluld at infinity

Ml Mach number of undisturbed stream at infinity (U /°l>

° veloclty of sound in wndisturbed £luid

v ratio of speciflc heats et constant pressure and constant
volume, for air 7 = 1.k

For the purpose of calculating the line inbtegrals indicated
in equation (5), 1% is necessary to express the in‘begrand.s as
functions of the independent varilables &,n of the z'-plane.

In the case of the elliptic profile in the z-plane, the conformal
transformation to a circle of radlus R with center at the origin
is

z = ¢ cos(f + 1A) (6)

where ¢ 13 the semifocal disbtance and A is defined by any one
of the followlng geometric characteristlcs of the ellipse:
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a =0 cogh A

b =c¢ ginh A
1
B=-2'ce7"

where a, b, and R are, respectively, semimajor axlis of ellipse,
semiminor axlis of ellipse, and radius of conformal circle. Now,
the affine transformation used in connectlon with the Ackeret
iteration process is

where

It follows thatb

and

where a ber indicates cénJuga-be-cdnplex guantltles, 8Since the
control contour is a large circle in the z’-pla:;e, n = Constant
and d4f = df= d4& Then, by use of equations (2) and (6) and the
relation R = —%'-ce’" , the expressions for Z end 472 on the control
ellipse beooms ' '
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and

_ \ '
cen'i'x 1 - ' - 1 - Z, dz
i (z#eenﬁ’v z> PG 92n+2’") i

(7p)

vhere 2! = e"ié
Similarly,

2 2
— 1l - 1- — 1
r2=ZZ.-.~. huz?+ huzg'l‘

and on the control ellipse, 1 = Constant,

2 20420 ' 2
2 co /2 1 :2 2 - _}__--————-—Z
ar =3 B 1) (Z 2 kel z +(” l> 22 JIntin

P = T, dgz?
s 2@ 4 1)o@ 2X<z:2 i ..1..> ! 8
z' .

Expressions for E%(u - iv) and oy /p as functions of the

variable 2z '(: e"lg) expanded in powers of l/en, are given by
equations (46) and f1-7) » respectively, of xreference 1. By the use
of these equations, together with equations (7) amd (8), it is easy
to evaluate ths right-hand member of equation {5) by noting that
only terms involving dz'/z' contribute to the line integrals.

The result thus obtained is
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2
il R e e o))

where o 1is the sngle of attack in the affinely distorted plane =

eand o = (7 + :1.)(;42 - l). If the quahtities &, b, ¢, and o

are replaced by a', b', c¢', and o' of the achtual profile in

the Z-plane according Lo the correspondence equations of refer-

ence 1, namely, -—

> - (9

the moment about the origin on the actual ellipse becomes

-1

M. = nplueoa'c"gp - %ﬂperdl"ﬁ ‘2(6 + h)M (10)

Wow, for an Incompressible fluid,

Mi:tO'

or
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Therefore,

M 1 L —— '2__-
M"'—i = 4§ - &1(0' + h)(}-l 3-)1 - 52 (11)

vhere +t' 1s the thickness coefficlent b'/a' of the actual
elliptic profile in the physical flow plane.

_ Egquation (11) represents a first-step improvement of the
Prandtl-Glavert approximation and reduces to that result in- the
limiting case +'-—~>0. This improvement, however, is incomplete,
for, as can be observed from equation (105, the second term on the
right-hand side is of the third order (that is, proportional

to a'd 2 and terms of that order are contribubted mainly by x|/3.
Since only the first two terms 11!1 and 1[:2 were derived in refer-
ence 1, it is necessary to determine the third term \Lf3 in order

to obtain the camplete first-step improvement of the Pranditl-Glauert
approximation for Mc /M:L

DETERMINATION OF W 3

In order to obtaln the third bterm \Lr3 in the expansion for the
gtream function " -

w:-ur'+wl+w2+w3+--- (12)

it 1s first necessary to obtain the expression for Py /05 inclusive

of third order terms, in the neighborhood of the mmdisburbed stresm.
Analogous to equation (19) of reference 1, this sxpression is
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R

\ Vo Vg
-0 -9 G- ”m;”” R SR 0|

-.'-_+ (u - )QIIXY&AU;V]-{%Y Vﬁ) (He )[&HI@ (7+ 1)61 J)( _-LY\‘&XE(;%Y>

3
L
-Q §a+u+nuﬁa+1m+3w+1ﬂu-1ﬂ}il+--- | (13)

When ths expresalons for arn'l pl'f:g glven: by eguationﬂ‘::(la?)' and (13) are substltubed into the

basic differentlal equation
AV R AN |
14
Bx(p BI) BY(D 31{) _ : ()

and tq;m.a of the third order in the derivaulves of \!.rn are collected, +he following differential
equation far 1|13 ic obteined: '

o1

gTST "©N NI VOVH




2
¥ + ¥ o 2 _ v
2 2 _ Mag¥oxy + Vaxpbex |1 2.\ _pd-afnx

1]

4 ¥y¥oxx + ¥t YixVv¥
-(“2”1)[2+(7+1)(u2—];\)] —= 2. 2y -1\r1+(7+1)(u -1)]__...___.”::‘2”“;

ue 2

- 2..)8 )3
+{k l+(u 21) E57+7) (7+1) ] (” ) {15+(7+l)u2[27+15+3(7+1) ua-l)]

[(7 P8 4 (7 4 1)( ; 1)][5 v 20y + l)( - 1)]} ——*m (15)

This differential equation can be expressed In a convenlent form for solution by making use of the
affine transformation

x:I

ek

"

and by introducing & new stream function ¥, where

¥ = W

gTeT *oN NI VOVN

1T




Then equation (15) becomes

P A g s
(2 -3) E 7+l - 1)] (i‘!;*lywﬁ';x;qﬁlxx:w&y‘) -2 " l_) [1 + (702 - 1)]"’*1x‘l”*1y¢*m -

+ F—ug:‘]‘ l+%6_@-1)&57 +7) = (74 })(FE - l)] +.;:6_\2 ) 1)2 {;5+ (77 . 1)u2E27+ 15) + 307 + (12 - l)]

, ’ /2 Nj /2 :l e B ' |
ok am s DR - 1)_][5 s 20y + DGE - 1) })wh Vi (16)

’ ' 121
Again, ag in reference 1, it will he found that the mathematicel enalysis will be considerably =
elmplified by working with a nonanalytlc camplex potemtial w*3(z,i') instend of its imaginary >

=
part \11*3. As shown in reference 1, \',c*l ie the imaginary part of en analytic function w*,(z), =
wherseas \!!*2 18 the imaginery part of a nonanalytic function w*e(z,i). It st be emphasized E.:;El
that the real parts of these complex fimctions are not| to be interpreted as velocity pctentials but K
only as functione thet render the analysis elegant end simple. The following identities can be B

easily verified:




NACA TN No. 1218

1
| = — - W
Yix ei(wlz v )

1 -
¥, = E(le + wli\

1
\ = — Wy amor
ley g(wlzz + lzz)
= .:.L.._ -~ W
Vixe T 51 (Vizz W:Lzz‘)

1 : —_ -
sz = -é—i-(wzz + Vg < Wo, = W‘22>
Y, = L, - wr - W .

2y 2( 2z 2z 2z WEE)

= I.P.i(wez - W‘EE)

1

! = =4 - e = T T =

Yoxy ° 2\w2zz WozZ T Yogz 222)
= IL.P.1 Vopm w252>

1 e - -
Vore = 'QE(WEZZ + 2¥pyF + Vogz T Vogg T 2Wppz - WEEz’)

= I.Pe(Wgy + 2Wop7 + WEEZ)

13
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where the asterisk has been dropped. Then
)
le lxx = ""(W - WZLZz') (lez B leE)

o 'E(le - ﬁlE)QI P *Wigo

2 1 —
wly Vg = EI(W:L + le) ( lzz wl'if)
= }j_;(wlz.. + le)eI.P.wlzz
\I’lx\pﬁxy + wlw\"ex = %I.P-(le - Wl"’/( Cog T WEEE)

é(wlzz + *lEE)I'P'(WEz + W—P.Z)

1 —
leWExx + “’lxx}l’Ey = E(wlz + le)I‘P '<w’£zz + BWpys + wEE'z')

# STB (Wgy = Figg)(Vag - voz)

\EI\P\I/ (lz lz)
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By means of these identities and by substitubling for Vo, from
equation (29) of reference 1, equation (16) cen be written as

28 L 328 ~(0+2) (i, - o) (W12g = iz * 2(wog + ¥25)(Vizz + 157)
'_L - .

7

- (o +2) (w’azz + w2§£> <wlz + Trl.z—) +2 (W2zz - W2EE) (wlz. - 1"512)
+ %l-u Er(ug + l) + {0+ 3}(1.12 - 1)]w1z2w1zz

+ .f': {8(c+ 1) + 0'2(;42 + l)+(p.‘% - l) [o’ + (o +_2)(° + l‘)]} -ﬁliawlzz

+ i [(cr +'2)2(p2 - l) +a(o+3) (@2 + l)]wlzx? 51 (x7)

where \!f3 is the imaginery part of wy. From equation (33) of

reference 1
l‘ - ; l - [
WQ = -—g(p,a - 1)[50'ZW122 + (U' + ,'(') Vlwlz +. F(Z)]

where F(z) is a .function,the form of which is decided by the
boundary conditions bub need not be given éxplicitly at this point.
When the expressions for the derivetives of Wy are inserted into

equation (17), then



8 2 Wy ]
z_; 32’2'=Z_(“2 ) 1)"‘ (wlzdwlzz)z +%G"2 - l) (wle 2:) U(U - G"E l\ 12 lzz)f

B

* E_(_E;ﬂ(pﬂ ) 1}"’12, 6':1{ )— =) hc‘l ) l) e +_§£{-’J‘2 B l)ﬁlEFzz

2
a(mu)@e 1) 5( Zwm);.(slis_‘tl.@e 6 w1

2 2
la {o+4) 2 N\ 2- u(c+h) 2 ‘_ ) u(c 3) =

_ o +éh)2642_1) RT) Vir g {8!'a+l) o @2.+1)+ EH&;M)@% g](ue_l)}ﬁﬁew

. %E@M%e_1)”(,12,,1)](“;)&

This difforentiszl equaticn can be integrated by inspection without difficulty. Thus the general
solutlion is

lzz

(18)

9T

gTST *ON NI VOVN



8 3 16 - l) lz?‘_’rlzz_*' %(32_' l) 2y By + G(U r2) 6‘2 )-—1 YA N ﬂgg"ﬂ(ﬂ? " l) wl‘—"liz

“&1}6"2_ )-— 0’+ll-('l "l) (Ul|-61l-)2(u ‘l)HQV » 2.-(_01'5'_(“ -]_)zw ..,wl

1
old+3) 2. 2 (a+W)%/0 N_ . I 1 o
+-—-—E---p V¥, --(-i'—a-—-—(u ~l)wlwﬁwlz+-ﬁu{§{:go+h)(u -l)

+ a(,;c’u)]fwl;-llg a0 4212, 220349 (e+2)] ("2'1)} "z [ My o
__ _ {
6,(2) + 0,(8) | _ (19)

where G,(z) and G.(Z) are arbitrary analybic functions, respectively, of oply % and %

to be determined by the boundary conditions. The boundary conditions to be satisfled are that
at the surface of the sllipse, n=0,

V.=0 - . (20a)

gTST “ON NI VOVN

It
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and at infinidty, 1 = w,

3$3 U
a3 a0 £0(D)
ox oy

and that the tralling end of the major axis be a stagnation point.
It may be noted that the result represented by eguation (19) is

not restricted to an elliptic profile but ls valid for an arbitrary
golld boundary.

Again, as in reference 1, the most direct way to impose the

boundary condition, \If3 = I.P.w3 = 0 at the surface of the solid,

18 to utilize the “polar" variable { of the z'-plane. Thus, for
the elliptic profile according to equation (39) of reference 1,

c cos (£ + 1A) - 2R cos § - 2Ra (sin § + §)

W, =
s (21)
at 2R sin § 2R cos § + 1
W =W, =l - — +
1z 18 gz ¢ sin ({ +1) © sin (£ + 1) |

where, from equation (6)

z=ccos ({ + 1)
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Just as in reference 1, it is a simple matber to supply the
functions of { needed to satisfy the boundary condition at the
gurface of the ellipse in the z-plane. For example, at the surface
where 1 = O, cos (%ﬁ in) = cos (€ ~ N}, By use of equations (21)
equation (195 then becomes

+ 202 - 1)c [oon (- 1) - cos (¢ - ) w7,

+ Eizéti*).(f- 1jc2 {c.os (£ - ) [cos (g - - 21% cos {
_-2§m (sian,E)} - cos (g-n){cos (¢ - 1) -2% cos §
- 2% (sin ¢ + I’?)]}Vlzwlzz

-|:%-°E+(G+ 3) + (30+ 8)(1.;2-1)] E:os (€ - 1) "? cos

- i—Rﬁ (sin ﬁ-}j) -cog ({ -ik.)+-?- cos +-§3;z (_sin §+§)]w122

+U+11-6_L2 l“l sin { __@&_cos_f%i_
¢ gin (E~-10) © ‘sin (¢~ 1)
_ =R gin ¢ +-2-§u. c:<:’s§’,+l]F

c gin (¢-4A) ¢ sin (¢ -iA)

(equation continued on next page)
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+ 08-1-4(;;2- l)c [cos(f-' i) -?i cos f--?;a, (sin £+ )

- cos ({ - 1)\.)+Z:R- cos § +§B<-z. (gin £ + Q)}Fz. )
+ %";693(“2* 1)02 {E:os_ (€ -1n) --?; cos ¢ - %—3«, (sin 54,5)]2
- [E:;os (¢ -1~ %3 coB ﬁ--éajm (si_n-{, -li-ﬁ)]e}wlzz

olosm (2. ). [ ¢ o[- @® _ einl
4 gl.6._._..(l_|. l)C {COS. (g n)[ ]+ ¢ pin (C_' 1%) .

_ R cosf—t—l'_ ' ; _‘:@ sin ¢
:“m] cos (¢ m[ T am (€ oy

- _@3_“ cos £ + 1 }%wlz2+gc+8h)3(pg_l),-:'__’_ng?______si t

¢ sin (¢~1) ¢ gin (:t: - 1))

4

L B, cos§+l LR sin { _2R, cos § + 1 0,
¢ ein ({-14\) © sin ({-3\) ¢ sin (£ -4n)

+ %—g [80' + (70‘ + 8) (p.2 - l)] [cos_ (£ -'j_)\.) - cos (¢ - i)")]wlz3

16 ¢ sin (£ -1n)

+ L r8(of+2)2+ 02+2(o+2)(35+ 8):]<“2"l)} [% ____B_in_i_,__

2R cos £ +-1 2R gin £
——l ——— e e e e
¢ sin ({-1n) © sin ({-1\)

S S -
2R cos f+ 1 2 dz
Ry coryl L mt (22



wheore

] ' 2 1) - -
"1:212' df=c Jcoﬂ (g,,.n).._hﬁm (m§+§)__§16, 08 §+%Lainh2). 1og cos (f+ 1A} - 1 |
ds.p. a L ¢ ¢ ce cos ([ + ) + 1 =
hRé & ' g
+ —5~ cof (g'ﬂ")‘*‘&g“ﬁr[? sin (£ -1A) +28 cosh X - giuh 2 Jog 222 (Cr\) -2 @
-© s 2 cos (+1n) +1
2
- 21 gich A log sin (§+1).)] + ¢ <cosh x+h—3-(m- 1) ~ B girP) 1og SOEBM 1 1
. . c 02 cosh A * 1
o
o B o v -2 ulet gtnn ) + 26 cosh A - L sizh 2, 1og SR XEE
o? # . 2 cosh ) -1

- 21 piph A log (-1 sinh J\.)]}

and 8.P., the lower limit of integration, denotes ‘the stagnation point. By means of the following
formmla {equation (44) of reference 1) for the complex velaclty (with regard to qr3 only) in the

physical Z-plane:

p Q?ﬂl’ -
____(,, -.dv> = 21 T & “f,(“ - w) -(24)

T2
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equation (22) can be shown to fulfill the boundery conditions, not
only at the solid surface, n = 0, but algo at Infinity, n = m;
morsover, the trailing end of the maJor axis (§= X, N = 0) 1s a
stagnation point. In order to satisfy the boundary conditions,
however, a number of slngularities of the natwwre of doublets have
been introduced into the field of flow. These unwelcams singu-
larities are caused by the factor 1/sin (g - iA) and are located

at the exterior points z' = Re" or Ql = iM and ([, = x4+ i),

They are removed by the addition of doublets in such a mammer that
the sum of the resldues at a pols is zero. The lmages, moreover,
of these superimposed. gingularities In the conformal circle of
radius R must be included in order to insure that the boundary
conditions are preserved. A4s an example, consider the expression

2(0) | (25)
sin (¢ - 12)

where the function H({) is regular everywhere in the finite region
extorior to the circle of radius R (n=0). Then; in order to cancel
the residues at the poles _f,l = iA and §2 = % +IX and to preserve

the boundery conditions at the solid and at infinity, the following
expression must be added to the right-hand side of equation (22):

s o ) e (o 58 2

By means of thie expression the additional terms can be casily
obtained in order that W3 be regular evorywheore in the finite

reglon exterior to the conformal circle of .radius R in the z'-plane
or ko the elliptic profiles in the z~plane and Z-plance. An
exemination of squation (22)immediately yields the following equa-
tion for H({)s : '
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K() = S4G2 - 1) - atm g (oo £ ][R0+ 52 com (£- 20w,

- (o+ h)wlwlZ]*"i_:g {8(G+ 2)2 4+ Er2+ 2(a + 2)(30‘4; 8)](142 - 1)}[' sin §

e
+ @ (cos _t,+l):[e)" wlze &z at (7
S.P. ag

whore, from equation (43) of reference 1,

F(¢) = -%’ac cos (f - ix)wize 2o + k)ic sinh A sin {wy, - (T+1)wywy,

+ 2bla + Yo (sin L+{) (28)

Now, the introduction of the foregolng gingularities induces
a finite velocity at the tralling ond of the maJor axls of the
olliptic boundary. This velocity, obtained by means of equation (24)

and exprossion (26), 1s

e 1 1 i L
i - = H ix H "i>v
P,U 613 TB)S.P- hic sinh A [ (. ,) + )] coshz-%
+ [H(:: + 4r) + H(x - 17\')]"}"'5‘{ (29)
ginh 5

Then, by means of eguatlons (27) enda (28), with terms of higher
order than the third neglected
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Ll oL _ o 22 _ .\ b
pU U3 :v3)s‘?. - Eh(a-l-h) (p l) a+b

- -i—;-’-s-(3 - log 1&)(;.:.2 - l) {8(0’ + 2)2

+ [02 + 2(c + 2)}(30 + 8)](y.e - l)} L

a+b

In order to meintain (Z= x, n = 0) a stagnatlion point, the
following expression, the imeginary pert of which vanishes
for =0 and for 17 = e,

(%(c + h)z(ue - l) - :—lL-é(3 - log k) {8(0' ¥ 2)?

+ [02 +2(0 + 2)(30 + 8)_](!*2 - l)}) B - al (30)

a +

must be added to the right-hand side of equation (22). Finally
then, the complete expression for -re-—e--—-'w3 is given by the right-

: . NCRREY
hend side of equation (22) and the expressions (26) and (30).

‘oq VP _
EQUATIONS FOR | — AND pl[p
U

The oomponents u3 and V3 of the veloclty of the com-

pressible £luid in the physical flow plane Z are calculated by
means of equation (24). Since, for the purpose of the present
paper, celculations are performed along an ultimately infinitely
large contour, the develoyments for u3. and V3 in the neighbor-

hood of infinity are sufficlent. Thus, by use of the camplete
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expression for w3, the development of the complex velocity

L uy - 1v.) in the meighborhood of infinity is given by
p,U w3

P 1 b \2 1
"'"“1.13“"'\" = ~ich =
p,U B3 a+d} gzl

: o 18 2 : 2
= ilaC -2 _ E-----+5.adi) b l, +E cx.{——"i-—-
a+b; 2Pn a+b] M En a+b

: -
b/ b: o
+ 1@(Bl+132 log a)(a +'b> _3.5n

p A3
- 6(—-"——?;) 1 L o e e (31)
a + 4 % '282'(1
where
2! = e"j'é
and

A= -21-1-;(0 + )-l-)e([.!..‘2 - 1)2 +%5-1_L(3 ~log 4) (;.LQ - l) {8(0'_-!'-'2)2
+ ETZ + 2{(c + 2)(30 + 8)](;;._2'-. l)} E

3, =205 - ) ol 27 ¢ 4) + (8 - 2) 3" 4 o + )]
5, = 202 -9) fate » 22 4 [P v 2o - 22030 4 8] (2 - )}

C = _%:'6"(0 + 1) (o + 8)(;.12 - 1)2
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g
]

—;—(U + 1&-)(“2'- 1)2

i
{

= —i‘:-é(o' + h)e.(p.e - 1)2

From equation (31), it follows easily that

P 2 1 b\ N2/ 1\ 1
2 u3=1ccA b z‘-}---—--iccB +By log —+C L. z'a--—-;'—;—
Ay a+b, z'/en 1 & a+b 2%/ 2N,

r(32)

s
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Then _

-2 AR - A0 T o O _l_];_
in /b N[, \. 2. U
-5 1+Bp log E)(:l_—:g) [(l Bz (1+p-)zlz]ezq

m(b"z o 1
;Ca+b)[l+p)z (1 - u)—; ]Qﬂ

1o b \° b 1
o oot - n

%‘ﬂ Tt = a+b} a+b> |'(l pz! +(l+u)——];%'-’-]-+- .
| (33)

4

From equation (46) of reference 1 and equation (33), therefore, tho
development in the neighborhood of infinity of the complete complex
velocity, inclusive of terms of the third order, is given by

il-(a+'b ][(1 -n)z!

w5 o [

';:C]'{;b_i_b)?_}El p.)Z -(l+u)-—-——J— [(L-L - a+b
2

C(Eb)]éle .2/ [(2 a+b

1/ o b
.._ i = =1 = foushuns -
DJ_ (u v ium+en¥.+ (u l>(c+h)a+'b+

+

m

/

rd

1./ \ B 1§ 1 o
o) oot
+E—;(2 )(c+1l-)
2
+%E(xm-6£:€);[<aib>} [(l-p)z'2+ (l+g)—z—];-2-] F oo e oo

{34)
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From equation (3%),

pa \ v
(plU) (plU) (u- iv)(u+i)

2 ) —
2ic|f2_\DP b Ao L\ _2ic2f b
ST 02N [(u l)a +Db ED(a+b) ]é’ zlh_ _efa'qpL &a+b
e > Ve 1\ 2 2 fie.
+1I-G* l)(d+h)(a+'b) J(Z z') een{a+b+ lt-(p' l)(o‘+1$)
+]Eﬂm 6--——-

a+b a+b }( z'2 oo (35)

Now, by definition

pu 1
U U\!IY
and B
LA
U U X
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Hence

o 2
! |
Yy *V¥y /e \?
i ;U
0

: 1
and. by means of eguation {(17) of reference 1 for -‘-3- and egua-~

tion (35),

PL_, _ta(2 (.2 b1/ N/, 1
-p—- )[1+-— -l)(o‘+h)a-l_b+;d-1&(a+b> z' -

" 2
* %Gﬁ ) l) (c+h)(ab+ ‘b)](z’2 -;J,.—)"e_e];.a(‘@ - l) __a.b+'b
[(p. -l)(cr+1|—)+lEGtu,- a+'bJ ab+b)2}<z,2+;]:’—)+ « .. (36)

CATCULATION OF THE LIFT

In a comprossible flow as in an incompressible flow, the 1lift
is glven by :

L. = plUT‘C
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where I' 1s the circulation round the profile and vhere, by

c
. . ", i
I, =‘9§(u X + v aY) = R.P.?S(u - iv) a2
f

definition,
Now, 47 1is glven by eguation (7b), and from equations (34) emnd (36)

1 ic 1/ 2 b
U(u. iv) = -1 i“a'+qu+l+(p .l)(°+h)a.+'b

+ %A(-é%—b-)g] [(l-p.)z’- (l+p.)%,4:(u2"l>(z'-i—;)]+ o v .

Then, because only terms that-involve dz'/z' contribute to the
line integral, it follows that

2 1AV
T, = haRUu mE. + %(“2 - l)(o + 11-)% + ‘é‘*(%)]

or if A 1is replaced by its definltion (see squation (31)), it
follows that

F 43RUL G;EH (u "l)(0+ll-)§+-6-);< =(o 4 1!-)2(;4. -

/ 2
+ -%(3 - log L) (p.z - l) {8(0' + 2)2 + to° +2{c+2){(30+ 8)] (;,Le - 1)}) 2;]
8 RZ
(37)
If, according to the correspondence squations (9}, b, e, and R

1 -
are replaced by l‘b’, -';or.’, and R' + l—g——'*b’, respectively, then
i B
for the actual eollipse In the physical flow planse,
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) 2
Pc= bR Ve lp + 210 'd ! [(l- M) +%L6.12 - l)(ct+ L) +}-'3-2-(13'(6 +’+)2(p.2 - l)

* -Jé'(3 -log &) (u.2 - 1) {8(0' +2)2 4 [02 + ?(c +2)(30 + 8)] (uz - 1)}) ‘.E‘];‘T]

Since the circulation in the case of incompressible flow is

I‘i = 4R 'Ua

the ratio T, fry o Lc]Li is given by

Le _Zle_ ., .t S1y .2 2_ 2] ,
1.1=I‘i—“+1+t'gl(u l)+l¥(7+l)(u l)

2 2
Lop -1fs’ N{if2. 2 _4¢a. 8(g +2)°
+ 17 " G“‘t') G(ﬂ- 1)(0‘+1ir) +8(3 log k) {(d+ )

+ (p.2 - l) E‘2+2(c+2)(3a + 8)]}) (39)

vhere +t' is the thickness coefficient b'/a' of the actual
elliptic profile in the physical flow plane. Equation (38)
represents a second-step improvement of the Prandtl-Glauert®
approximation and reduces to that result when t'—30. In refer-
ence 1 a first-step improvement of the Prandtl-Glauert approxi-
mation for the ratio L, F"i wag calculated and is represented by

the first two terms on the right-hend side of equation (38).
Table I shows values of the ratlo Lc [I"i for the first-step and

second-step improvements, for various values of the thickness
coefficlent +' and the stream Mach number M; (with 7 = 1.k

for air). FTigure 2 shows the corresponding graphs with Ml as
absclsga and Lc fLi as ordinate. An examinatlon of these graphs
shows that below the critical stream Mach number M., the maln
effect of compressibility is already given by the Prandtl-Glauert
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term and the first-step improvement and that large differences
between the finrst-step and second-step improvements do not appear
until well above the critical stream Mach number. -

In reference 2 the ratlo L, /Li was calculated for an ellipiic

cylinder by the method of Poggi. This result, restated in the nota-
tion of the present paper, is

L a ! 1 o Y
_.9.==l+1‘l\'I:|_2;l+m3 4-'21+t' log 2 - 2 t'glosl‘;
Ly 2 Pl- % 1-% 1+ % (L -~%") t
1L+ 2 V1 + ' + YL - &7
_V - 'log - - + e 9 e (39)
l"JG 1-% Vl+t' _vl_tl

and must agree with egquation ( 38) insofar as the terms common to
the two developments are concerned.. If; then, equation (38) is
expanded according to powers of Ml and equatlion: (39) 1ls expanded

according to powers of t', +the two expansions are found_to agree
and yleld

I’C
I; 2r TP

Sy -]-'Mlzt' + -,:_L-L-(.l - log M)Mlet"?' o

CATCULATION OF THE MOMENT

For the purpose of calculating 'bhe moment ‘Lhe following two
equations are needed. From eguations (7)

N .
c 21 2\ dz'
_-__..l.. — 4 ——
8( W)TEE Z
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and from equations (3%) and (36)

+(l+u.)d 2]+. ..

By means of these equations and equations (8), (35), and (36),
equation (5) for the moment M. eabout the origin ylelds the

following result:

M, = 7P Uzc:,(a"'sb)2 2ach. {(ﬂ -l)[8+(14 +l,(cr+h)]

bl £ Db 2\
+ 4B, + 4By log a}<a+b>j
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Agaln, replacin c, and o according to the correspond-

ence equatioans ?9) yields

. A 2
Pato'2y -1 > -1 2_L po-1 2
My=npyU a'lc! - P o'k (o +4)p"" =~ 3570 at " <\‘8(0’+2)

e Festonerea](2-) } ron 2 Blestaros)

6.302 + ’-&llq + 32} (1.:.2 - l)])b =

where B; and BQ have -'been replaced by their definitions. (See
equation 31.) Now, for an incompressible fluid,

My = npy

The ratio Mc!Mi for the actual elliptic profile in the physical
Flow plene therefore hecomes .

M 2 _ . _. S
T 1(16(0 c2)24 (12 1) [Py 1200 22 - {s(c +2)2
My 32w S . ! .

(y. -l) [o‘ +2(0‘+2)(30’+8)J} logy—)

(ko)

l'b'

Equation (40) represents  the complete first-step improvement
of the Prandtl-Glauert approximation for the ratio of moments M /Mi

and reduces to that result in the limiting case +'~—> 0. Again,
as in the case of the 1lift, the ratio M /Mi was calculated for

an elliptic cylinder by the method of Poggi (reference 2). This
result, restated in the notation- of the present paper, 1is

i 1+ %! 'El c
—E—l+lM & ﬂ/ ‘log—,-2M1d+... (1)
M (l - t:)ékl_ - % 't .

[X
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Just ag in the case of the 1lift, equations (40) and (L41) must agree
ingsofar as the terms common to the two results are concgrned.. Thus,_
if equation (40) is expended according to powers of M;~ and equa-
tion (41) 1s expanded according ‘o powers of +t', +the expansions
are found to agree and yield

Mo 2 _ oy 2402 2,2 1
Ej__=l+éMl - 27! +Mlt'.log~%—,—+-... . o

Table IT shows valuss of the ratilo .Mc [Mi calculated by means

of equation (40) for various values of the thickness coefficieqt 5!
and the stream Mach number M,, and figure 2 shows the corresponding

grephs with M; as abacissa and Mc lMi as ordinate.

Contrary to the 1ift, which is a localized vector, the moment
is a nonlocallzed vector, the magnitude of which depends on the
point about which it is teken. In the present paper, this point
is the origin of coordinates. If, now, the moment about the
origin O is denoted.by M,., the moment about any other point 2

in the plane of flow ls then glven by
MCP = :MCO - rlllc

vhere r is the length of the pérpendlcilar dropped from the
origin 0 %o 'bhg iine of action of the 1ift vechor I'c through

the point P. IFf this expression for the moment 18 examined in
rolation to the moment sbout the same point P in an Incompressible
£luid, it will be seen that the ratioc of moments M /MiP again

begins with the Prandtl-Glauert approximation bub that the higher
terms of the approximation depend on the point P about which

the moments are taken. Figure 2, consequently, should not be

used to compere the wvarious momsnt curves with the Pranditl-Glauert
approximation; rather, the significant result is the compressibllity
effect on the movemsnt of the center of pressure from its position
in an incompressible fluid - a guantlity that is independent of the
point about which moments are taken. -
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EFFECT. OF COMPRESSIBILITY ON POSITION OF CENTER OF PRESSURE

Is '-"CC' and Gi' denote the distance of the center of pressure

from the center of the ellipse in the compressible and lncompressible
fluids, respectively, then

cc Mc L:!.
————— e —— S——
¢, M I,

Also, C4 = .—Z-(l - t')3 therefore,

-

cc”ci___l-.t'fgf_c_;_}_i_-_l R (h2)
2a 3 \M;;_I'c

By means of this formula and eguations (38) and (40) it is possidle
to calculate the effect of compressibllity on the poslition of the
center of pressure for various thiclkness coefflclents and stream
_ : . . C. - C
Mach nuwbers. Teble ITT shows values of the iatio —9-2———-1;, the
: a

negative values indicating movement toward the center of the elliptic
profile. Figure 2.shows the corresponding graphs with the stream

Sc = G
' 2a . .
chord as ordinate. Note that in each case at same high subsonic
gtream Mach number, the movement of the center of pressure roverses.
(See teble TIT where sign changes from negative to positive.) This
peculiar behavior of the center of pressure ls probably caused by

Mach number . MJ: as abscissa and the ratio in percent

the term log -‘-;—;- in the equation for the moment M, and indicates
the need for additional terms in the expansion for the stream



function ¥ to insure greater accuracy in the range of high sub-
sonic stream Mach numbers. —_—

Langley Memorial Aeronautlcal Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., October 24, 1946 -

REFERENCES

1. Kaplan, Carl: Effect of Compressibility at High Subsonic ) e
Velocities on the Lifting Force Acting on an Elliptic Cylinder. '

NACA TN No. 1118, 1946.

2, Kaplan, Carl: A Theoretical Study of the Momsnt on a Body in
a Compressible Fluid. NACA Rep. No. 671, 1939.



TABLE I

RATIO OF LIFPS FCR COMPRESSIBIE AND INCOMFRESSIBLE FLOWS

B

LofTy (first-step improvement) L, F.i (second-step improvement)

t' =0105 t' =0-10 'b' "-"-0015 t-l =0-20 t'=0-05 t'=0|lo t!=0015 'bl !0;20

o
REBIITRIBSELRE

1.0053 1.0055 1.0057 1.0059 1.0053 1.0056 1.0058 1.0060
1.0217 1.0226 1.0235 1.02h3 1.0217 1.0228 1.0238 1.0248
1.0510 1.0534 1.0557 1.0577 1.0511 1.0539 1.0566 1.0562
1.0969 1.1021 1.1069 1.1133 1.0972 1.1032 1.1093 1.1152
1.1280 1.13%5 1.1%23 1.1486 1.1285 1.1373 1.1460 1.1547
1.1664 1.1770 1.1.867 1.1956 1.1672 1.1799 1.1926 1.2052
1.2140 1.2291 1..2429 1.2556 1.2153 1.2337 1.2524 1.2711
1.2739 1.2957 1.3155 1.3337 1.2760 1.3033 1.3312 1.359%
1.3510 1.3830 14121 1.43688 1.3546 1.3961 1.4392 1.183L
1.4534 1.5016 1.5456 1.5860 1.k600 1.5259 1.5957 | 1.667T7
1.5955 1.6715. 1.7409 1 1.609k 1.7212 1.8427 1.970k
1.8099 1.9401 2.0589 2,1679 1.8407 2.0524 2.2901 2.5455
2.1732 2.4231, 2.6513 2.,8605 2.261h 2.78h0 3.3121 3.9397
2.9548 3.5554 L, 10k2 b 3.3327 4.930% 6.9353 9.2308 -

NATIONAL ADVISCRY
COMMITIEE FOR AERONAUITCS

Q1ST ‘©N NI VOV
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TABIE II

NACA TN No.

RATTIO OF MOMENTS FOR COMPRESSIBLE AND INCOMPRESSIBLE FLOWS

M, B Mc/Mi
t' = 0.05 t! = 0.10 % 0.15 £' = 0.20
0.10 1.0050 1.0051 1.0051 1.0050 1.004k9
.20 1.0206 1.0207 1.0208 1.0206 1.0202
.30 1.0483 1.0486 1.0488 1.0478 1.0467
L0 1.0911 1.0920 1.0925 1.091k 1.0880
45 1.1198 1.1212 1,1222 1.1208 1.1158
<50 1.1547 1.1570 1.1587 1.1570 1.1499
55 1.197h 1.2012 1.2044 1.2023 1.1923
60 1.2500 1.256L 1.2625 1.2605 1.2461
.65 1.3159 1.327h 1.3392 1.33%5 1.3377
.70 1.4003 1.h022 1.4469 1.h511 1.h211
75 1.5119 1.55€0 1.6147 1.6358 1.5946
.80 1.6667 1.7789 1.9294 2.0135 1.9707
& 1.8983 2.2438 2.7h499 3.1211 3.1895
.90 2.2942 3.9315 6.57h1 8.9709 10.4271
TABLIE IIT
MOVEMENT OF CENTER OF FRESSURE AS FUNCTION OF STREAM
MACH KUMBER AND THICKNESS CORFEFICTHNT
c.~-C
c i
¥ B o
5! = 0,05 t' = 0.10 ' = 0,15 t' = 0.20
0.10 1.0050 -0.0001 ~0.0001 -0 .0002 -0.0002
.20 1.0206 -.0002 -.000k4 -.000 -.0009
.30 1.0483 - .0006 ~.0011 - 001 -.0024
1o 1.0911 -.001L ~-.0022 -.003% -.00Lk9
A5 | 1.1108 -.0015 -.0030 -.00k7 ~.0067
.50 1.1547 -.0021 -.0040 - .0063 -.0092
.55 1.197h -.0028 -.0054 -.0085 ~-.012}4
.60 1.2500 -.0039 -.0071 -.0113 -.0167
.65 | 1.3159 -.0048 -.0092 -.01k9 -.0223
.70 1.4003 - .0062 -.0117 ~.0193 -.0296
T5 1.5119 -.0076 -.0139 -.0239 -.038
.80 1.6667 -.0080 -.0135 -.0257 -.0L52
.8 1 8913 -.0019 .0005 ~.0123 -.0381
<90 2.2042 Ooh27 0750 0624 .0259

NATTONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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(a) Z-plane, ' (b) z-plane, {e) r'-plane,

Figure l.~ Flow plane Z with directlons of tangent and normal on control
contour; plane z of affinely distorted profile; plane ! of circle
conformally related to profile in rzt-plane,
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Fig. 2a

Lefl; or M /M,
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NATIONAL ADVISORY
(a) t' = 0,05, COMMITTEE FOR AERONAUTICS

Figure 2,= Ratio of 1lifts and ratio of moments in compresslble
and incompreeslble flows and movement of center of pressure
in percent chord as functlions of stream Mach number, Center
of pressure movemenit rearward with increaslng stream Mach
number, }
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Flgure 2.« Qontinued.



Fig. 2¢ NACA TN No. 1218

25 Lecond-step Amprovement
| |
_First—steplimprgvement

Y

Prandtl=Glauert approximation

-.—..,:ﬂ—.,__.____-\..

P——
|
--_____\_

20 30
li
i
'\:\u /." BN
: 1
S / ! / i+~
- S
> N/ :
R A e s : L5 B
_ Ol
ol
M'r‘
10 | { 0
0 2 4 b .8 1.0
M, NATIONAL ADVISORY

(¢) %! = 0.15. COMMITTEE FOR AERONAUTICS
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